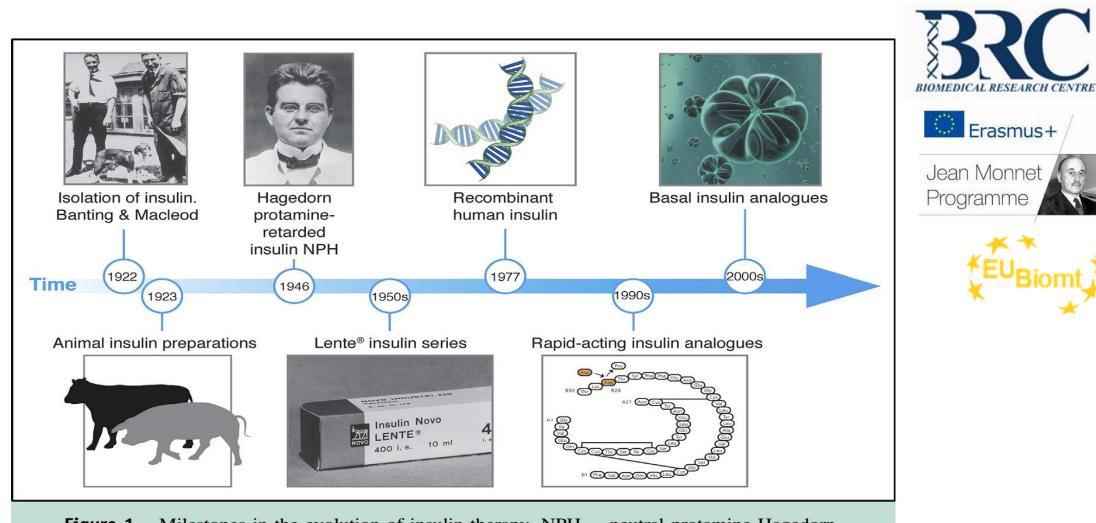
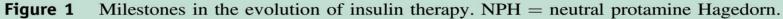
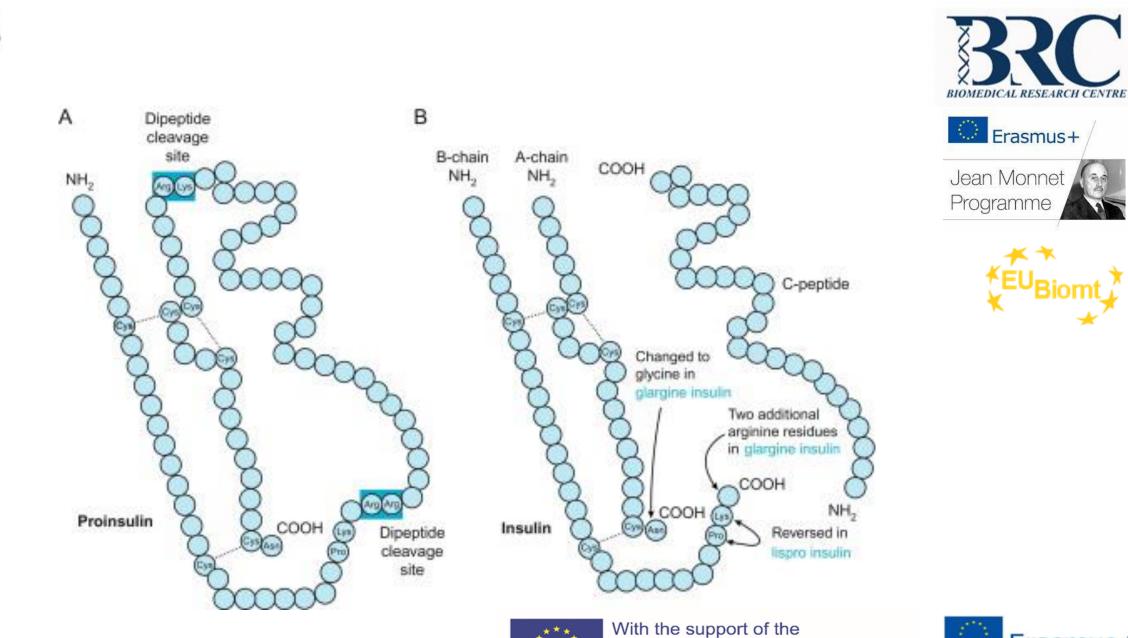


Біотехнологічні фармацевтичні продукти


«Modern European trends in biomedical higher education: Bionanomaterials.» № 620717-EPP-1-2020-1-UA-EPPJMO-MODULE


Лекція містить контент англійською мовою



https://www.nlm.nih.gov/exhibition/fromdnatobeer/exhibition-interactive/recombinant-DNA/r alternative.html#:~:text=Recombinant%20DNA%20is%20a%20technology,insulin%20gene%20ir

Erasmus+ Programme of the European Union

Erasmus+

Jean Monnet Modules

Виробництво інсуліну в Україні

indar.com.ua

THE FIRST GENERATION OF THERAPEUTIC PROTEINS

Humulin	Insulin	Eli Lilly	Diabetes	Diabetes
Hematrope	Recombinant somatropin	Eli Lilly	Hormones	Growth failure
Genotropin	Somatropin	Pfizer	Hormones	Growth failure
Saizen	Somatropin	Serono	Hormones	Growth failure
Nutropin/Protropin	Somatropin/Somatrem	Genetech	Hormones	Growth failure
ntron A	Interferon alpha 2b	Schering- Plough	Anti-infective	Viral infections
Avonex	Interferon beta-1a	Biogen Idec	Multiple sclerosis	Chronic inflammatory demyelinating polyneurophathy
Betaseron/Betaferon	Interferon beta-1b	Schering AG	Multiple sclerosis	Multiple sclerosis
Procrit/Eprex	Epoetin alpha	J&J	Blood modifier	Anemia
Epogen	Epoetin alpha	Amgen	Blood modifier	Anemia
NeoRecormon	Epoetin beta	Roche	Blood modifier	Anemia
Kogenate	Factor VIII	Bayer	Blood modifier	Hemophilia
NovoSeven	Factor VIIa	Novo Nordisk	Blood modifier	Hemophilia
Benefix	Factor IX	Wyeth	Blood modifier	Hemophilia
Fabrazyme	Agalsidase beta	Genzyme	Enzymes	Fabry disease
Replagal	Agalsidase alfa	TKT Europe	Enzymes	Fabry disease
Pulmozyme	Domase alpha	Genetech	Enzymes	Cystic fibrosis
Activase/Acitlyse	Alteplase	Genetech	Blood factor	Myocardial infarction

Medical Biotechnology

Phuc V. Pham, in Omics Technologies and Bio-Engineering, 2018

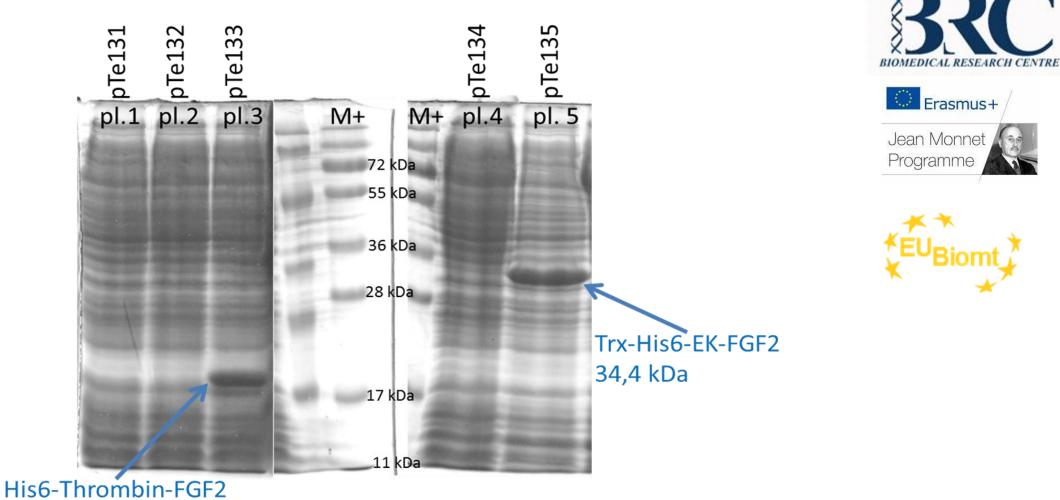
THE SECOND GENERATION OF THERAPEUTIC PROTEINS

Humalog/Liprolog	Insulin Lispro	Eli Lilly	Diabetes	Diabetes
Lantus	Glargine insulin	Sanofi-Aventis	Diabetes	Diabetes
Levemir	Detemir insulin	Novo Nordisk	Diabetes	Diabetes
Pegasys	Pegylated interferon alpha -2a	Roche	Interferon	Hepatitis C
Peg-Intron	Pegylated interferon alpha -2a	Schering Plough	Interferon	Hepatitis C
Aranesp	Darbepoetin alpha	Amgen	Blood modifier	Anemia
Neulasta	PEG-Filgrastim	Amgen	Blood modifier	Neutropenia
Refacto	Factor VIII	Wyeth	Blood modifier	Hemophilia
Amevive	Alefacept	Biogen Idec	Inflammation/Bone	Plaque psoriasis
Enbrel	Etanercept	Amgen	Anti-arthritic	Arthritis
Ontak	rIL-2-diptheria toxin	Ligand Pharmaceuticals	Cancer	Cancer

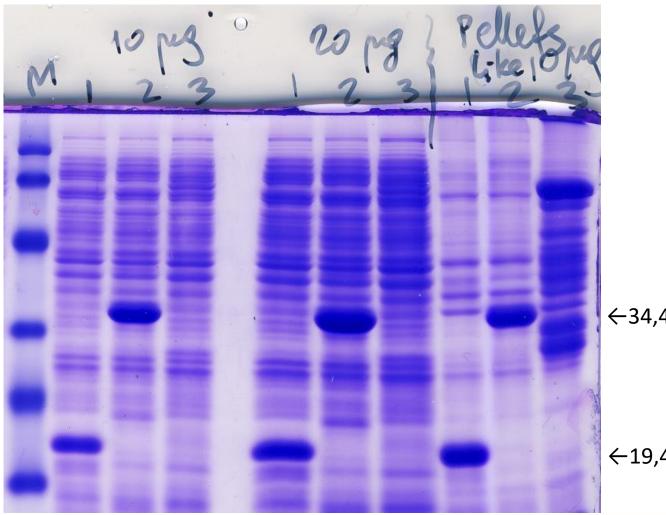
Medical Biotechnology

Phuc V. Pham, in Omics Technologies and Bio-Engineering, 2018

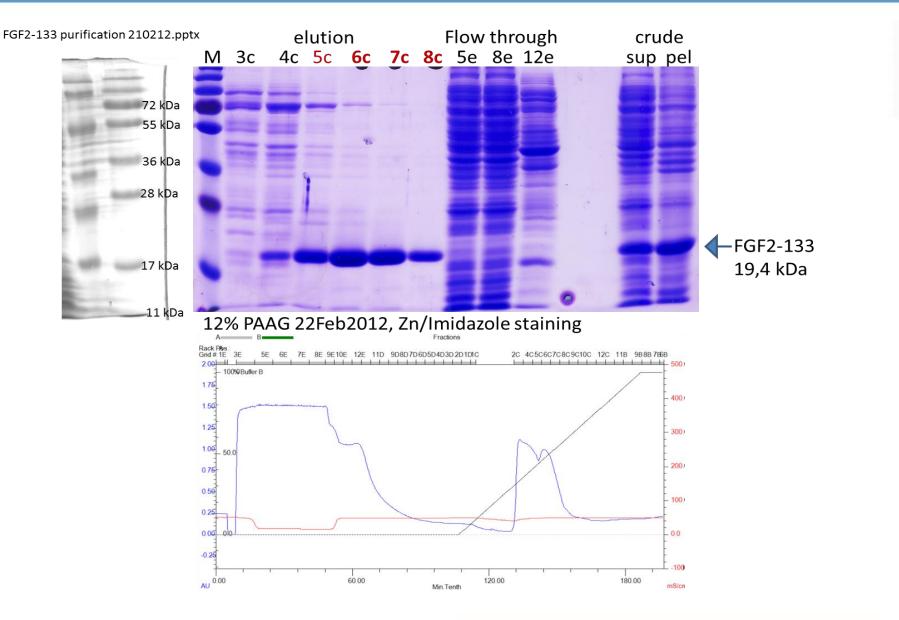
081211	Fragment Template is pTe102	restrictases
<u>pTe131</u> pET27b-FGF2-His6	FGF2-cds-2C/2B	Ndel-Xhol
<u>pTe132</u> pET28b FGF2-His6	FGF2-cds-2A/2B	Ncol-Xhol
<u>pTe133</u> pET28b-His6-Thrombin- FGF2	FGF2-cds-2C/2D	Ndel-Xhol
<u>pTe134</u> pColdTF-FGF2	FGF2-cds-2C/2D	Ndel-Xhol
<u>pTe135</u> pET32a-Trx-His6-Fgf2	FGF2-cds-2A/2D	Ncol-Xhol



Induction 19Dec2011 in BL21(DE3), soluble fractions

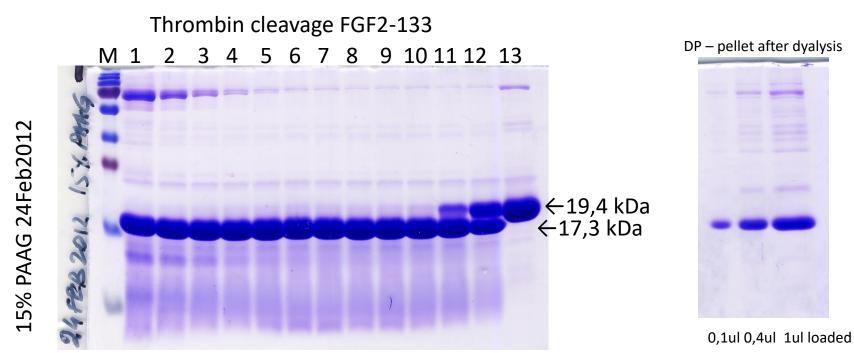

His6-Thrombin-FG 19,4 kDa

EnBase fermentation 15Feb2012


←34,4 kDa

←19,4 kDa

With the support of the Erasmus+ Programme of the European Union

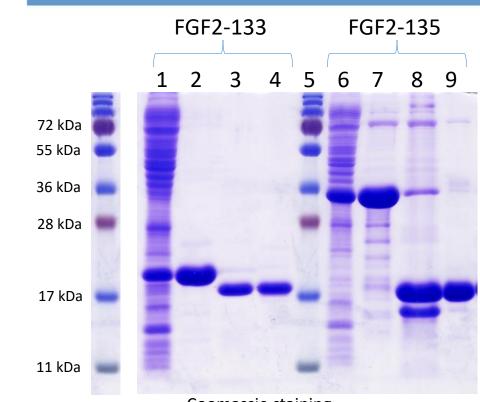

BIOMEDICAL RESEARCH CENTRE

Erasmus+

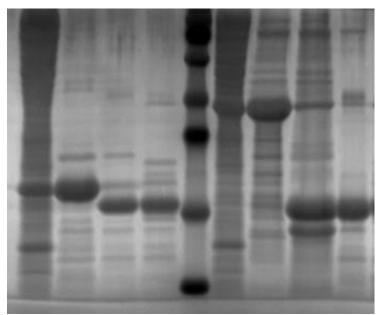
Jean Monnet

Programme

7,5 ul of the soluble dyalyzed protein loaded per lane – from 16 ml of over 2 mg/ml FGF2-133


Info is in the file

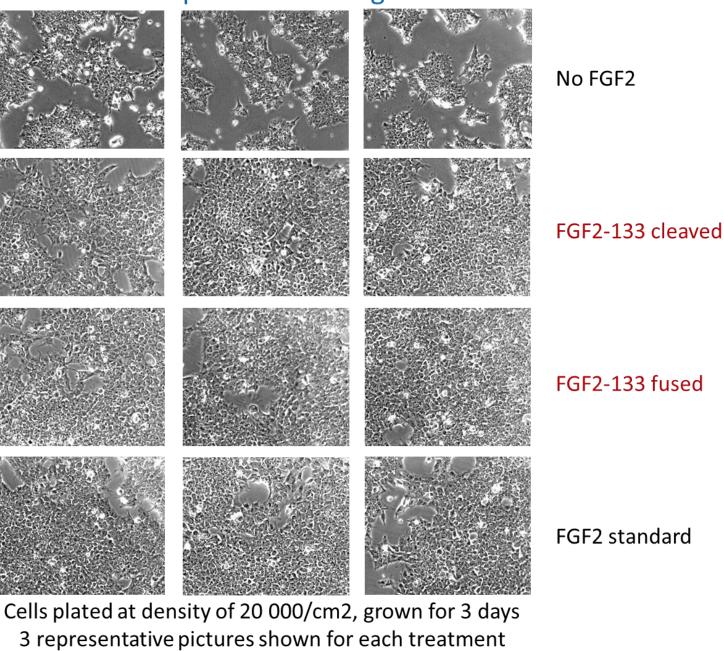
FGF2-133 thrombin cleavage 23Feb2012


We assumed that not more than 18 mg of protein got precipitated, while Over 32 mg of FGF2-133 remained in soluble form. Then, the purity of the Precipitated protein is much worse (5-7 folds more dirt) than the soluble protein.

									•			•		,		•
	1	2	3	4	5	6	7	8	9	10	11	12	13			
	prot 1	prot 2	prot 3	prot 4	prot 5	prot 6	prot 7	prot 8	prot 9	prot 10	prot 11	prot 12				
	100 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF	50 ul FGF				
												+ 50 ul				
	+ 1 u / 1 ul	+ 50 ul pr1	+ 50 ul pr2	+ 50 ul pr3	+ 50 ul pr4	+ 50 ul pr5	+ 50 ul pr6	+ 50 ul pr7	+ 50 ul pr8	+ 50 ul pr9	pr10	pr11				
excess, x	10	5	5 2,5	1,25	0,63	0,31	0,16	5 0 <i>,</i> 08	0,04	0,02	0,01	0,005	0			
															1 u per about 2	00 ug
	1 u/100 ul	0,5	5 0,25	0,125	0,0625	0,031	0,016	0,008	0,004	0,002	0,001	0,0005			protein	
hrombir	: 0,005-0,01	L units cleav	ved 100 ul c	of protein w	ith about 2 (or more mg,	/ml									
	which mea	ns that for	1 ml of prot	ein we sho	uld take 0,05	5-0,1 units o	of									
	Thrombin.															
		which mea	ins that for	our 15 ml p	rotein - arou	ind 30 or mo	ore mg tota	l - we should	l use 1,5 un	its of Thron	nbin.					
			we could u	se 1 unit, o	^r 0, 75 units	per this amo	ount,									
				and, on the	e other hand	l, we can ind	crease this a	amount safe	ly to at leas	t 3 units per	⁻ 15 ml					

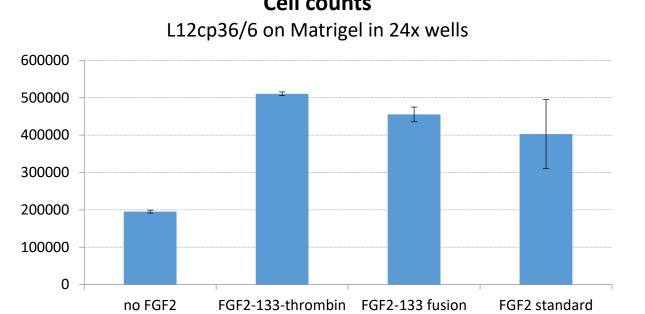
Coomassie staining

- 1 FGF2-133 fusion crude soluble, 19,4 kDa (fused to His-tag)
- 2 FGF2-133 fusion Ni-NTA purified, 19,4 kDa
- 3 FGF2-133 digested with thrombin, 17,6 kDa
- 4 FGF2-133 Heparin purification, 17,6 kDa final
- 5 Mol weight marker
- 6 FGF2-135 fusion crude soluble, 34,4 kDa (fused to His-Thioredoxin tag)
- 7 FGF2-135 fusion Ni-NTA purified, 34,4 kDa
- 8 FGF2-135 digested with Enterokinase, 17,3 kDa
- 9 FGF2-135 Heparin purification, 17,3 kDa final



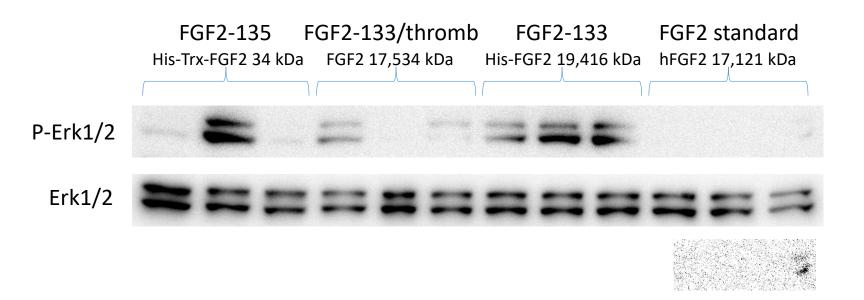
L12cp36-6 on Matrigel

BIOMEDICAL RESEARCH CENTRE


FGF2-133 fused

FGF2 standard

Cell counts



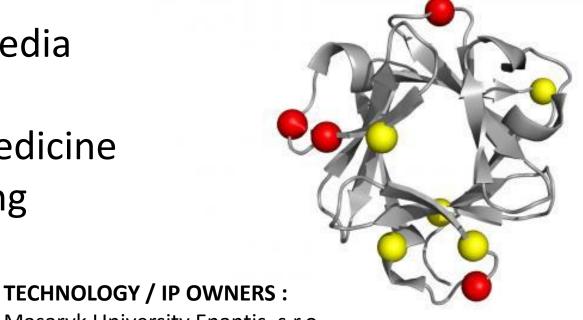
Cells plated at density of 20 000/cm2, grown for 3 days

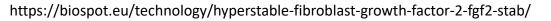
L12cp36/6 were plated at 20 000 cells/cm2 in 24x plate in cHES medium without FGF2.

Cells were allowed to grow for 3 days.

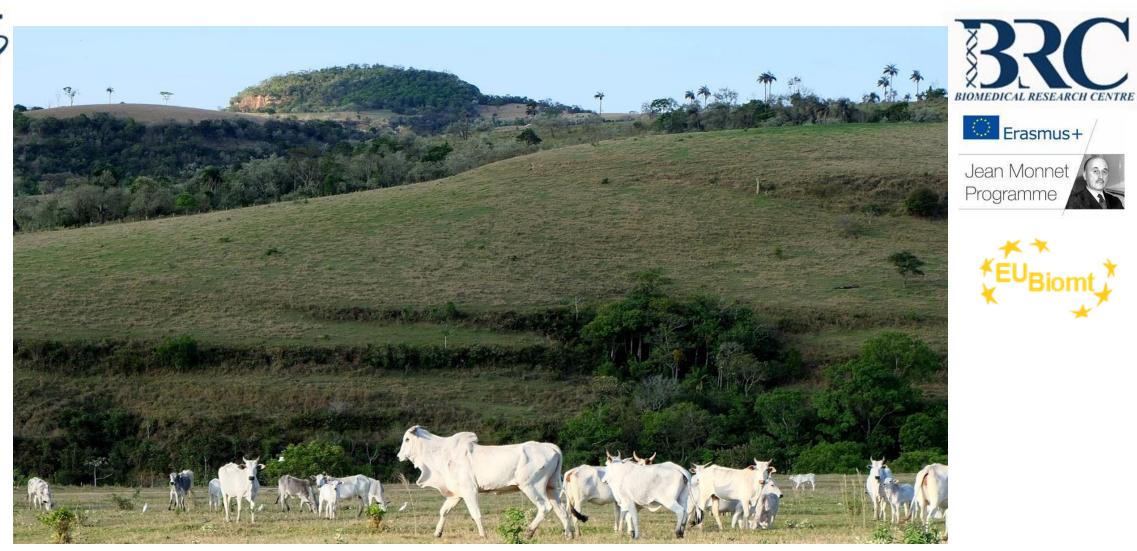
The recombinant FGF2 variants were added each day (3 times), meaning that the controls had FGF2 added 24 hrs before.

For FGF2-135, the cells were used which were not exposed to any FGF2 for all 3 days.


For western, cells were treated with fresh portions of FGF2 variants for 10 min – lyzed in Fermentas' lysis buffer.

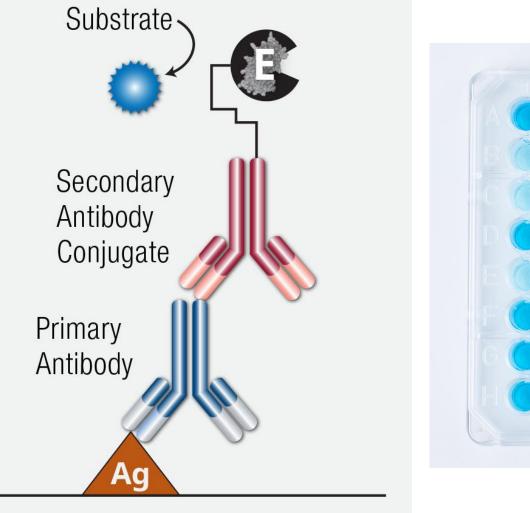

- retains full biological activity even after twenty days at 37°C
- half-life of biological activity of a wild type FGF2 is 9 hours at 37°C
 - FGF2 for cultivation media
 - FGF2 for cosmetics
 - FGF2 for veterinary medicine
 - FGF2 for wound healing

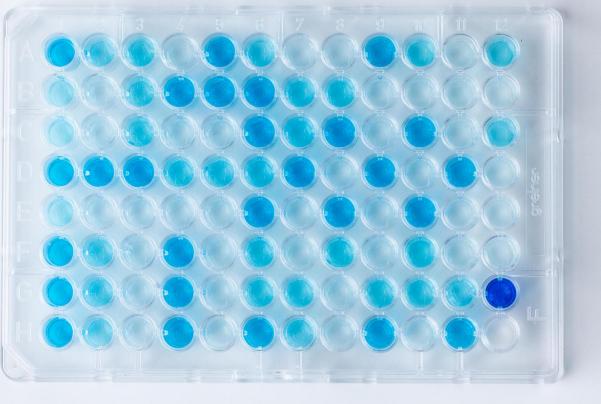
Frasmus-


lean Monne

Programm

Masaryk University Enantis s.r.o.





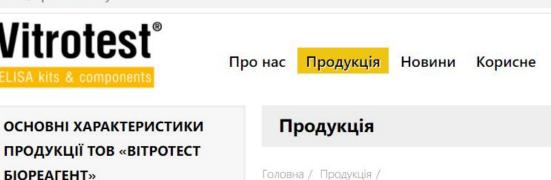
Recombinant antigens

Indirect Assay

https://media.cellsignal.com/www/images/resources/applications/elisa/elisa-indirect-assay.jpg

https://www.integra-

biosciences.com/sites/default/files/styles/large/public/images/ elisa-viaflo-96-384-8993.jpg?itok=5rolbtIn



БІОРЕАГЕНТ»

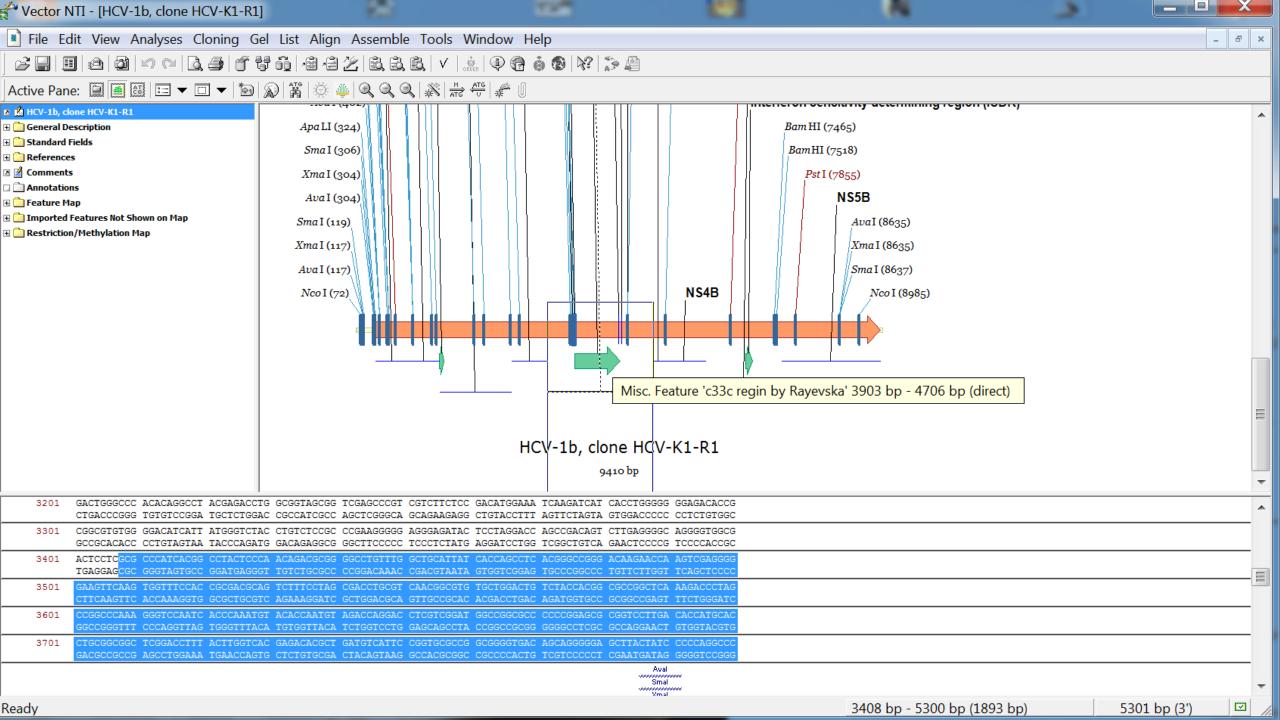
Vitrotest®

- Час проведення аналізу 2-2,5 години;
- Лунки стрипів відокремлюються в усіх наборах;
- Зміна кольору розчинів на різних етапах постановки;
- Можливість постановки вручну та на автоматизованому роботі;
- Усі реагенти мають чітке маркування та кольорову індикацію;
- Діагностичні характеристики підтверджені на комерційних панелях сироваток;

Інфекційні захворювання	Алергія	Компоненти in bulk
	Інфекційні захворюва Імуноферментні тест-систе та бактеріальних інфекцій, інвазій.	ми для діагностики вірусних
вірусний гепатит В	 Урогенітальний мікоплазмоз 	• Токсокароз
Вірусний гепатит С	• Уреаплазмоз	• Ехінококоз
Вірусний гепатит А	 Урогенітальний трихомоніаз 	• <u>Трихінельоз</u>
Токсоплазмоз	 Урогенітальний хламідіоз 	 <u>Хвороба Лайма (бореліоз)</u>
<u>Краснуха</u>	• <u>Сифіліс</u>	 Вірус Варіцелла-Зостер
Цитомегаловірусна інфекція	• Хелікобактеріоз	• <u>Kip</u>
Простий герпес	 <u>Лямбліоз (гіардіоз)</u> 	• <u>Дифтерія</u>
<u>Інфекційний мононуклеоз</u>	• Аскаридоз	• COVID-19
Мікоплазменна пневмонія	• Опісторхоз	

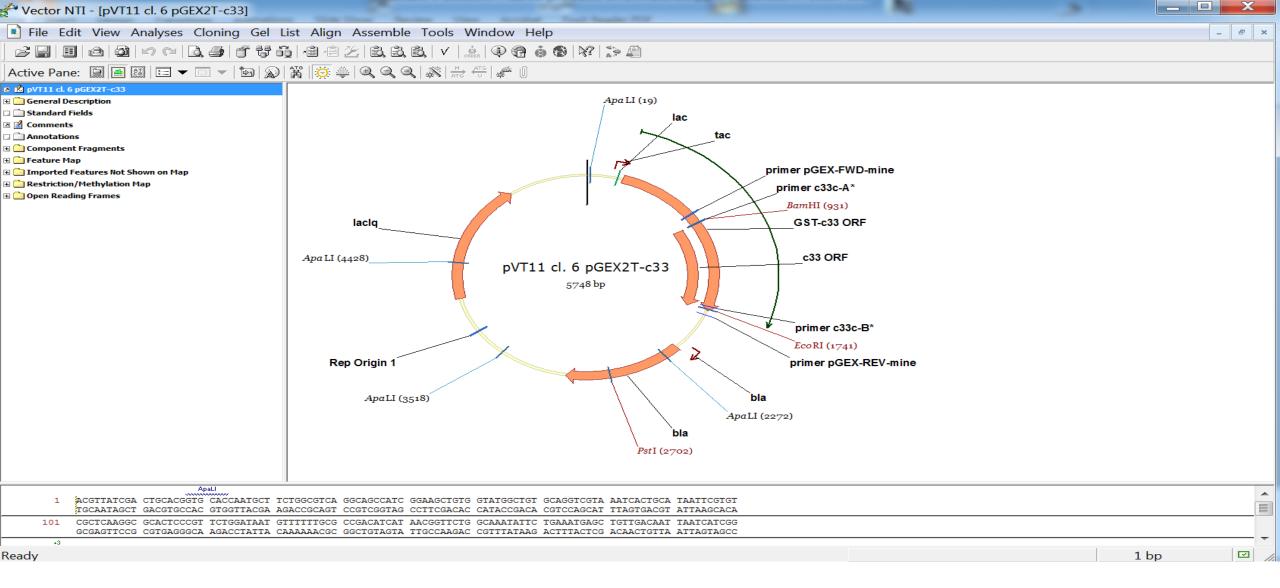
Контакти

Q 🕸

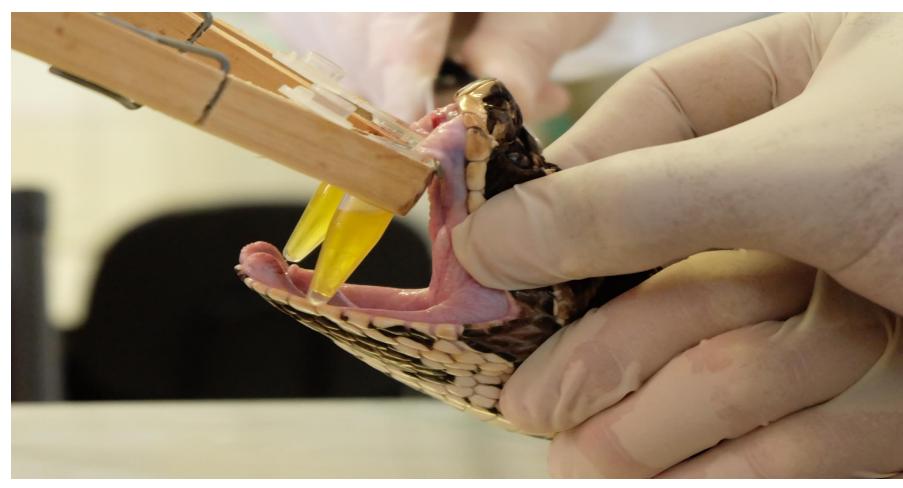

RU

EN

UA

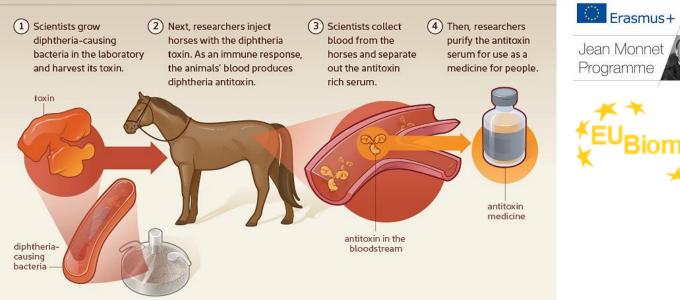


Untitled - AlignX												
Project Edit View Align Analyses Assemble Tools Window H	Help											
2 🗐 🏜 🖆 🕼 🕼 📖 🗟 🍠 🚳 🔞 💖 💖												
Active Pane: 🔲 🖻 🛄 🛛 🔍 🔍 🔍 💷 🖅 🔛												
• ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	+1		4.44			1 · · · · · · · · · · · · · · · · · · ·				ah an		Similarity
	1	80	160	240	320	400	480	560	640	720	800	880
p10 d. 1 sequencing	+10	N A MANA	771			1""			'			Absolute Complexity
p 10 d. 3 sequencing (0.0398)	1	80	160	240	320	400	480	560	640	720	800	880
	+10											Absolute Complexity (p10 cl. 1 sequencing corrected?)
p10 d. 6 sequencing	1	80	160	240	320	400	480	560	640	720	800	880
p10 d. 7 sequencing												
1 1 10 20 30 10 cccaNNATCCTCCAAAATCGGATCTGGTTCCGCGTGGA	40	50 GACTTTGTACCC	60 GTCGAGT	70 C <mark>T</mark> T <mark>TGGAAA</mark>	80 CT <mark>AC</mark> TATGCG	90 GTC <mark>CCGGT</mark>	100	110	120 CACCGGTCG	130 TACCGCAGAC	140 ATTCCAAGTG	150 SCCCATCTACACGC
p10 cl. 3 sequencing 1 GCGACCATCCTCCAAAATCGGATCTGGTTCCGCGTGGA p10 cl. 6 sequencing corrected 1 GCGACCATCCTCCAAAATCGGATCTGGTTCCGCGTGGA p10 cl. 7 sequencing corrected 1 ATCCTCCAAA-TCGGATCTGGTTCCGCGTGGA	TCCGCGGTG TCCGCGGTG TCCGCGGTG	GACTTTGTACCC GACTTTGTACCC GACTTTGTACCC	GTTGAGT(GTTGAGT(GTCGAGT(C <mark>TA</mark> TGGAAA C <mark>TA</mark> TGGAAA CC <mark>A</mark> TGGAAA	CTACTATGCG CCACTATGCG CTACCATGCG	GTCTCCGGT GTCCCCGGT GTCCCCGGT	CTTCACGGACA TTTCACGGATA CTTCACGGACA	ACTCATOC ACTCATOC ACTCATOC	CACCGGCCG CCCCGGCTG CACCGGCCG	TACCGCAGAC TACCGCAGAC TACCGCAGAC	ATTCCAAGTG ATTCCAAGTG ATTCCAAGTG	GCCCATCTACACGO GCCCATCTACACGO GCCCATCTACACGO
Consensus 1 GCGACCATCCTCCAAAATCGGATCTGGTTCCGCGTGGA	TCCGCGGTG	GACTTTGTACCC	GTTGAGT	CTATGGAAA	CTACTATGCG	GTCCCCGGT	CTTCACGGACA	ACTCATCCC	CACCGGCCG	TACCGCAGAC	ATTCCAAGTG	GCCCATCTACACGCC
Ready			consen	sus posit	ions: 100.	0% ident	ity position	s: 82.1%				



Antiserum

Erasmus+



HOW DID THEY MAKE DIPHTHERIA ANTITOXIN?

SCIENTISTS LEARNED TO HARNESS THE IMMUNE SYSTEMS of some animals to produce antitoxin serums to use as medicines. Diphtheria antitoxin was one of these medicines. Doctors used diphtheria antitoxin

to treat and prevent diphtheria, an often deadly childhood disease.

ANTIDIPHTHERIC SERUM U.S.P.F. IGHTH REVISION DE IN No.1. DOOD ANTITOXIC UNITS No.1. DOOD ANTITOXIC UNITS Methods. The serum of an end be reamed at retemportant bia area be reamed at remethods. The serum of the serum of a sum of serum of the s

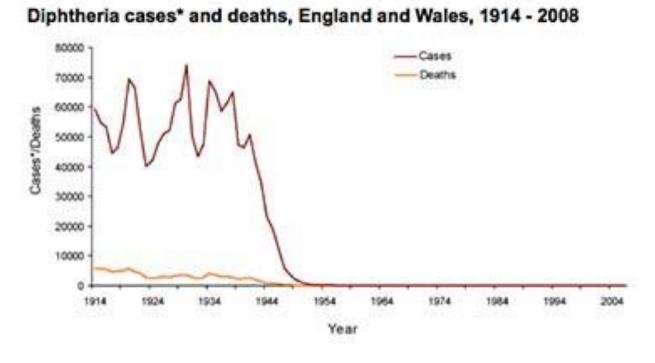
hthevia-Antil

10 Cubic Centimeters

Emil von Behring

(15 March 1854 -31 March 1917) German physiologist He was awarded the first Nobel Prize in Physiology or Medicine in 1901 for his discovery of diphtheria antitoxin

Butrous Foundation


https://denispombriant.medium.com/lets-make-an-antiserum-for-corona-virus-bb1a96dc5808

https://denispombriant.medium.com/lets-make-an-antiserum-for-corona-virus-bb1a96dc5808

Jean Monnet Programme

Research Highlight | Published: 12 January 2021

MUTOIMMUNITY mRNA vaccine shows promise in autoimmunity

Alexandra Flemming \square

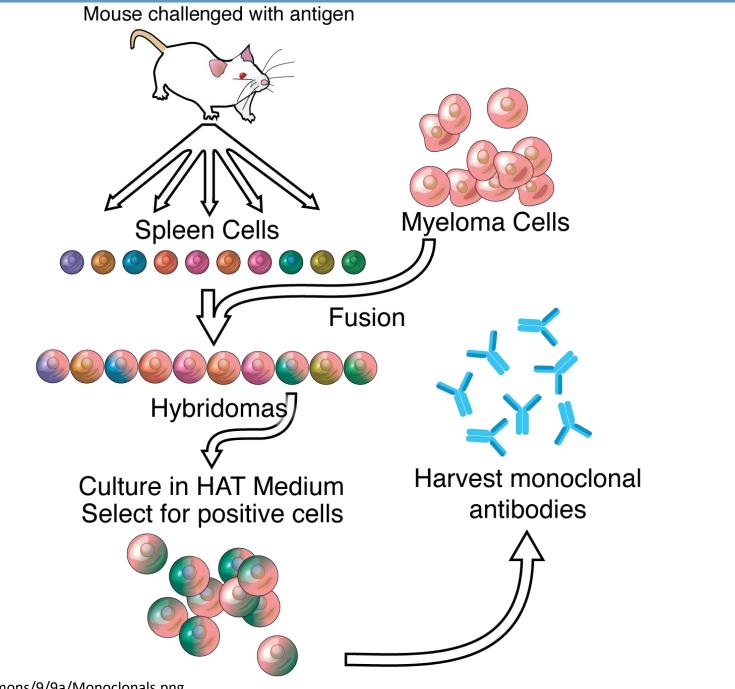
Nature Reviews Immunology 21, 72(2021) Cite this article11k Accesses 108 Altmetric Metrics

Recombinant antibodies

COVID-19 treatment: 1.2 grams of both - casirivimab

- imdevimab

With the support of the


Erasmus+ Programme of the European Union

https://www.nytimes.com/2020/11/21/health/regeneron-covid-antibodies-trump.html

https://upload.wikimedia.org/wikipedia/commons/9/9a/Monoclonals.png

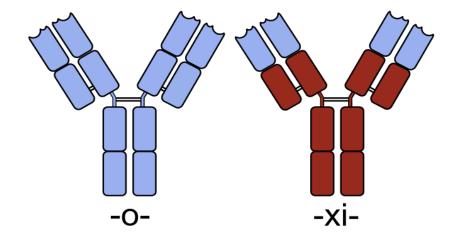
The Nobel Prize in Physiology or Medicine 1984

Foundation archive. Niels K. Jerne Prize share: 1/3

Photo from the Nobel Foundation archive. Georges J.F. Köhler

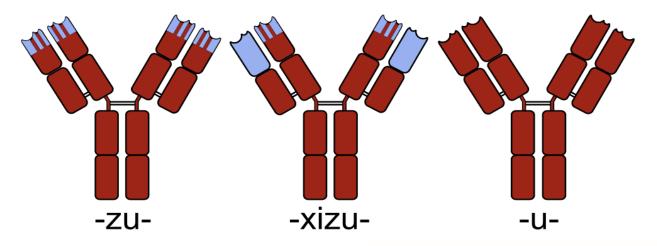
Prize share: 1/3

Photo from the Nobel Foundation archive. César Milstein Prize share: 1/3



The Nobel Prize in Physiology or Medicine 1984 was awarded jointly to Niels K. Jerne, Georges J.F. Köhler and César Milstein "for theories concerning the specificity in development and control of the immune system and the discovery of the principle for production of monoclonal antibodies."

https://www.nobelprize.org/prizes/medicine/1984/summary/


Recombinant antibodies

US FDA-approved monoclonal antibody on the market

mAb	Brand name	Company	Target	Format	Technology	Indication ^{&}	US [#] Approval
Muromonab- CD3	Orthoclone OKT3	Centocor Ortho Biotech Products LP.	CD3	Murine IgG2a	Hybridoma/Janssen Biotech, Inc	Kidney transplant rejection	1986*
Abciximab	Reopro	Centocor Inc./Eli Lilly/Janssen Biotech Inc.	GPIIb/IIIa	Chimeric IgG1 Fab	Hybridoma	Prevention of blood clots in angioplasty	1994
Rituximab	MabThera, Rituxan	Biogen Inc./Roche, F. Hoffmann-La Roche Ltd./Genentech Inc.	CD20	Chimeric IgG1	Hybridoma	Non-Hodgkin lymphoma	1997
Palivizumab	Synagis	MedImmune/AbbVie Inc.	RSV	Humanized IgG1	Hybridoma	Prevention of respiratory syncytial virus infection	1998
Infliximab	Remicade	Janssen Biotech Inc.	ΤΝFα	Chimeric IgG1	Hybridoma	Crohn's disease	1998
Trastuzumab	Herceptin	Roche, F. Hoffmann-La Roche, Ltd./Genentech Inc.	HER2	Humanized IgG1	Hybridoma	Breast cancer	1998
Alemtuzumab	Campath, Lemtrada	Berlex Inc./Genzyme Corp./Millennium Pharmaceuticals Inc.	CD52	Humanized IgG1	Hybridoma	Chronic myeloid leukemia	2001
Adalimumab	Humira	AbbVie Inc.	ΤΝFα	Human IgG1	Phage display	Rheumatoid arthritis	2002
Ibritumomab tiuxetan	Zevalin	Biogen Inc./Schering AG/Spectrum Pharmaceuticals Inc.	CD20	Murine IgG1	Hybridoma	Non-Hodgkin lymphoma	2002
Omalizumab	Xolair	Roche, F. Hoffmann-La Roche, Ltd./Genentech	IgE	Humanized IgG1	Hybridoma	Asthma	2003

https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-019-0592-z

US FDA-approved monoclonal antibody on the market

						Curcinomu	
Emapalumab	Gamifant	NovImmmune	IFNγ	Human IgG1	Phage display	Primary hemophagocytic lymphohistiocytosis	2018
Fremanezumab	Ajovy	Teva Pharmaceutical Industries, Ltd.	CGRP	Humanized IgG2	Hybridoma	Migraine prevention	2018
Ibalizumab	Trogarzo	Taimed Biologics Inc./Theratechnologies Inc.	CD4	Humanized IgG4	Hybridoma	HIV infection	2018
Moxetumomab pasudodox	Lumoxiti	MedImmune/AstraZeneca	CD22	Murine IgG1 dsFv	Phage display	Hairy cell leukemia	2018
Ravulizumab	Ultomiris	Alexion Pharmaceuticals Inc.	C5	humanized IgG2/4	Hybridoma	Paroxysmal nocturnal hemoglobinuria	2018
Caplacizumab	Cablivi	Ablynx	von Willebrand factor	Humanized Nanobody	Hybridoma	Acquired thrombotic thrombocytopenic purpura	2019
Romosozumab	Evenity	Amgen/UCB	Sclerostin	Humanized IgG2	Hybridoma	Osteoporosis in postmenopausal women at increased risk of fracture	2019
Risankizumab	Skyrizi	Boehringer Ingelheim Pharmaceuticals/ AbbVie Inc.	IL-23 p19	Humanized IgG1	Hybridoma	Plaque psoriasis	2019
Polatuzumab vedotin	Polivy	Roche, F. Hoffmann-La Roche, Ltd.	CD79β	Humanized IgG1 ADC	Hybridoma	Diffuse large B-cell lymphoma	2019
Brolucizumab	Beovu	Novartis Pharmaceuticals Corp.	VEGF-A	Humanized scFv	Hybridoma ^{\$}	Macular degeneration	2019
Crizanlizumab	Adakveo	Novartis Pharmaceuticals Corp.	P-selectin	Humanized IgG2	Hybridoma	Sickle cell disease	2019

https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-019-0592-z

Fibrin sealant

KITOS DĚKUH **ARVIO** CFACI56 THANK YOU

Programme

DANKE SCHON MUITO OBRIGADO

